8 research outputs found

    An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow

    No full text
    In this paper, we develop a meshless collocation scheme for the numerical solution of magnetohydrodynamics (MHD) flow equations. We consider the transient laminar flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct. The flow is driven by the current produced by electrodes placed on the walls of the duct. The method combines a meshless collocation scheme with the newly developed Discretization Corrected Particle Strength Exchange (DC PSE) interpolation method. To highlight the applicability of the method, we discretize the spatial domain by using uniformly (Cartesian) and irregularly distributed nodes. The proposed solution method can handle high Hartmann (Ha) numbers and captures the boundary layers formed in such cases, without the presence of unwanted oscillations, by employing a local mesh refinement procedure close to the boundaries. The use of local refinement reduces the computational cost. We apply an explicit time integration scheme and we compute the critical time step that ensures stability through the Gershgorin theorem. Finally, we present numerical results obtained using different orientation of the applied magnetic field

    An implicit potential method along with a meshless technique for incompressible fluid flows for regular and irregular geometries in 2D and 3D

    No full text
    We present the Implicit Potential (IPOT) numerical scheme developed in the framework of meshless point collocation. The proposed scheme is used for the numerical solution of the steady state, incompressible Navier-Stokes (N-S) equations in their primitive variable (u-v-w-p) formulation. The governing equations are solved in their strong form using either a collocated or a semi-staggered type meshless nodal configuration. The unknown field functions and derivatives are calculated using the Modified Moving Least Squares (MMLS) interpolation method. Both velocity-correction and pressure-correction methods applied ensure the incompressibility constraint and mass conservation. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it can be applied, in a straightforward manner to: steady, unsteady, internal and external fluid flows in 2D and 3D, (ii) it equally applies to regular an irregular geometries, (iii) a distribution of points is sufficient, no numerical integration in space nor any mesh structure are required, (iv) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (v) it is quite simple and accurate, (vi) results can be obtained using collocated or semi-staggered nodal distributions, (vii) there is no need to compute the velocity potential nor the unit normal vectors and (viii) there is no need for a curvilinear system of coordinates. Simulations of fluid flow in 2D and 3D for regular and irregular geometries indicate the validity of the proposed methodology

    Strong-form approach to elasticity: Hybrid finite difference-meshless collocation method (FDMCM)

    No full text
    We propose a numerical method that combines the finite difference (FD) and strong form (collocation) meshless method (MM) for solving linear elasticity equations. We call this new method FDMCM. The FDMCM scheme uses a uniform Cartesian grid embedded in complex geometries and applies both methods to calculate spatial derivatives. The spatial domain is represented by a set of nodes categorized as (i) boundary and near boundary nodes, and (ii) interior nodes. For boundary and near boundary nodes, where the finite difference stencil cannot be defined, the Discretization Corrected Particle Strength Exchange (DC PSE) scheme is used for derivative evaluation, while for interior nodes standard second order finite differences are used. FDMCM method combines the advantages of both FD and DC PSE methods. It supports a fast and simple generation of grids and provides convergence rates comparable to weak formulations. We demonstrate the appropriateness and robustness of the proposed scheme through various benchmark problems in 2D and 3D. Numerical results show good accuracy and h-convergence properties. The ease of computational grid generation makes the method particularly suited for problems where geometries are very complicated and known only imperfectly from images, frequently occurring in e.g. geomechanics and patient-specific biomechanics, where the proposed FDMCM method, after its extension to non-linear regime, appears to be a promising alternative to the traditional weak form-based numerical schemes used in the field

    Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods

    No full text
    Purpose: The purpose of this study is to employ magnetic fluid hyperthermia simulations in the precise computation of Specific Absorption Rate functions -SAR(T)-, and in the evaluation of the predictive capacity of different SAR calculation methods. Methods: Magnetic fluid hyperthermia experiments were carried out using magnetite-based nanofluids. The respective SAR values were estimated through four different calculation methods including the initial slope method, the Box-Lucas method, the corrected slope method and the incremental analysis method (INCAM). A novel numerical model combining the heat transfer equations and the Navier-Stokes equations was developed to reproduce the experimental heating process. To address variations in heating efficiency with temperature, the expression of the power dissipation as a Gaussian function of temperature was introduced and the Levenberg-Marquardt optimization algorithm was employed to compute the function parameters and determine the function's effective branch within each measurement's temperature range. The power dissipation function was then reduced to the respective SAR function. Results: The INCAM exhibited the lowest relative errors ranging between 0.62 and 15.03% with respect to the simulations. SAR(T) functions exhibited significant variations, up to 45%, within the MFH-relevant temperature range. Conclusions: The examined calculation methods are not suitable to accurately quantify the heating efficiency of a magnetic fluid. Numerical models can be exploited to effectively compute SAR(T) and contribute to the development of robust hyperthermia treatment planning applications. © 2020 Associazione Italiana di Fisica Medic
    corecore